1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
| #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Custom FK / beamforming array analysis (no obspy.array_processing) 改进:使用速度 (km/s) 替代慢度,每天输出雷达图,并标注最大能量点 """ import os import glob import math import numpy as np import matplotlib.pyplot as plt from obspy import read, UTCDateTime from datetime import timedelta
# ---------------- User parameters ---------------- station_file = "station.lst" data_dir = "data" # structure: data/YYYYMMDD/NET_STA_LH?.SAC output_dir = "arr_figures" os.makedirs(output_dir, exist_ok=True)
# frequency band of interest fmin, fmax = 0.028, 0.032 # Hz
# window settings win_len = 1800 # seconds win_frac = 0.5 # 50% overlap win_step = int(win_len * (1 - win_frac))
# FK grid az_step = 5.0 az_grid = np.arange(0, 360, az_step)
# speed search (instead of slowness) vmin, vmax, vstep = 1, 5.0, 0.05 # km/s #s_grid = 1.0 / np.arange(vmax, vmin, -vstep) # convert to slowness s/km speed_grid = np.arange(vmin, vmax, vstep) # convert to slowness s/km
#speed_grid = 1.0 / s_grid # for plotting s_grid = 1.0 / speed_grid # for plotting
# day range start_date = UTCDateTime("2013-01-01") end_date = UTCDateTime("2025-01-01")
# minimal number of stations min_stations = 3
# ---------------- helper functions ---------------- def read_stations(station_file): stations = [] with open(station_file, "r") as f: for line in f: line = line.strip() if not line or line.startswith("#"): continue parts = line.split("|") if len(parts) < 4: continue net, sta = parts[0].strip(), parts[1].strip() try: lat = float(parts[2]); lon = float(parts[3]) except Exception: continue stations.append((net, sta, lat, lon)) return stations
def geo_to_xy_km(lats, lons): lat0 = np.mean(lats) lon0 = np.mean(lons) deg2km_lat = 110.574 deg2km_lon = 111.320 * math.cos(math.radians(lat0)) xs = (np.array(lons) - lon0) * deg2km_lon ys = (np.array(lats) - lat0) * deg2km_lat return xs, ys, lat0, lon0
def window_slices(day_start, win_len, win_step): t0 = int(day_start.timestamp) t_end = int((day_start + 86400).timestamp) slices = [] t = t0 while t + win_len <= t_end: slices.append((t, t + win_len)) t += win_step return slices
def next_pow2(n): return 1 << (n - 1).bit_length()
# ---------------- main pipeline ---------------- stations = read_stations(station_file) if len(stations) == 0: raise SystemExit("No stations read from station.lst")
print(f"[INFO] Read {len(stations)} stations")
current = start_date while current <= end_date: day_str = current.strftime("%Y%m%d") day_path = os.path.join(data_dir, day_str) print(f"\n[INFO] Processing {day_str} ...") if not os.path.isdir(day_path): print(f"[WARN] {day_path} not found. skip.") current += timedelta(days=1) continue
# read one trace per station traces = {} lat_list = []; lon_list = []; net_sta_list = [] for net, sta, lat, lon in stations: pattern = os.path.join(day_path, f"{net}_{sta}_LHZ.SAC") files = sorted(glob.glob(pattern)) if not files: continue try: tr = read(files[0])[0] traces[(net,sta)] = tr lat_list.append(lat); lon_list.append(lon); net_sta_list.append((net,sta)) except Exception as e: print(f"[WARN] read {files[0]} failed: {e}") continue
nsta = len(traces) if nsta < min_stations: print(f"[WARN] Only {nsta} stations available, skip.") current += timedelta(days=1) continue
# sampling rate sr_target = min([tr.stats.sampling_rate for tr in traces.values()]) xs, ys, lat0, lon0 = geo_to_xy_km(lat_list, lon_list)
# reorder traces traces_ordered = [traces[k] for k in net_sta_list]
# window slices day_start = UTCDateTime(current.strftime("%Y-%m-%dT00:00:00")) slices = window_slices(day_start, win_len, win_step) print(f"[INFO] {len(slices)} windows")
# accumulate daily power grid daily_power = np.zeros((len(az_grid), len(s_grid))) nwin_used = 0
for (t0, t1) in slices: specs = [] valid = True nfft = None for tr in traces_ordered: try: seg = tr.slice(UTCDateTime(t0), UTCDateTime(t1), nearest_sample=False) except: valid = False; break expected_npts = int(round((t1 - t0) * sr_target)) data = seg.data.astype(np.float64) if len(data) < expected_npts: if len(data) == 0: valid = False; break data = np.pad(data, (0, expected_npts-len(data))) elif len(data) > expected_npts: data = data[:expected_npts] data -= np.mean(data) data *= np.hanning(len(data)) if nfft is None: nfft = next_pow2(len(data)) spec = np.fft.rfft(data, n=nfft) freqs = np.fft.rfftfreq(nfft, d=1.0/sr_target) specs.append(spec) if not valid or nfft is None: continue
specs = np.array(specs) freq_mask = (freqs>=fmin)&(freqs<=fmax) if not np.any(freq_mask): continue freqs_sel = freqs[freq_mask] specs_sel = specs[:, freq_mask]
xs_arr = np.array(xs); ys_arr = np.array(ys) spec_power = np.sum(np.abs(specs_sel)**2) if spec_power<=0: continue
two_pi = 2*np.pi power_grid = np.zeros((len(az_grid), len(s_grid))) for ia, az_deg in enumerate(az_grid): az_rad = math.radians(az_deg) proj = xs_arr*np.sin(az_rad) + ys_arr*np.cos(az_rad) for is_idx, s in enumerate(s_grid): delays = proj*s steering = np.exp(-1j*two_pi*np.outer(delays,freqs_sel)) beam_spectrum = np.sum(steering*specs_sel, axis=0) power = np.sum(np.abs(beam_spectrum)**2) power_grid[ia,is_idx] = power/spec_power daily_power += power_grid nwin_used += 1
if nwin_used==0: print(f"[WARN] no valid windows {day_str}") current += timedelta(days=1) continue
daily_power /= nwin_used print(f"[INFO] averaged over {nwin_used} windows")
# ---------------- plot daily radar ---------------- theta, r = np.meshgrid(np.deg2rad(az_grid), speed_grid) Z = daily_power.T # shape (len(s_grid), len(az_grid))
# locate max power max_idx = np.unravel_index(np.argmax(Z), Z.shape) max_az_deg = az_grid[max_idx[1]] max_speed = r[max_idx] # km/s
fig = plt.figure(figsize=(7,7)) ax = fig.add_subplot(111, polar=True) pcm = ax.pcolormesh(theta, r, Z, shading="auto", cmap="viridis") ax.set_theta_zero_location("N") ax.set_theta_direction(-1) ax.set_rmax(vmax) #fig.colorbar(pcm, ax=ax, orientation="vertical", label="Normalized Power") ax.set_title(f"FK Radar {day_str}\nBand {fmin}-{fmax} Hz", fontsize=12)
# mark max point ax.plot(np.deg2rad(max_az_deg), max_speed, 'ro', markersize=8, label=f"Max Power\nAz={max_az_deg:.1f}°, v={max_speed:.2f} km/s") ax.legend(loc='upper right', bbox_to_anchor=(1.3,1.1), fontsize=8)
out_png = os.path.join(output_dir, f"fk_radar_{day_str}.png") plt.savefig(out_png, dpi=200, bbox_inches="tight") plt.close() print(f"[INFO] saved {out_png}") current += timedelta(days=1)
|